Jaswant Rai Mahajan* and Inês Sabioni Resck

Department of Chemistry, University of Brasília, Brasília-DF, Brazil

Oxabicycloalkenones via their Tosylhydrazones¹

Tosylhydrazones **4a–d** of vinylogous lactones **1a–d** on treatment with *N*-bromosuccinimide, under strictly controlled conditions, give the title acetylenic compounds **5a–d** in 65–90% yield.

A New Synthesis of Medium Ring and Macrocyclic Acetylenic Lactones from

Medium ring and macrocyclic lactones are important natural products and we have developed several methods for their synthesis,^{2,3} including recently the ring expansion of some oxabicycloalkenones **1a-d** to α -chloroketones **3a-d**, *via* their chlorohydrins **2a-d**.^{2b,d} Our studies to convert these chloroketones into the corresponding acetylenic and ethylenic compounds are continuing and we now report a novel two-step conversion of **1a-d** to the title acetylenic lactones by the fragmentation of their tosylhydrazones **4a-d** provoked by *N*-bromosuccinimide (NBS),⁴ under suitable conditions (Scheme 1).

The vinylogous lactones **1a–d**, prepared by known methods,^{2b,5,6} were converted into their tosylhydrazones under standard conditions by gentle refluxing (1–3 h) with tosylhydrazine (1.1 equiv.) in methanol, containing a drop of acetic acid or dilute hydrochloric acid (m.p.s, t^{0} °C: **4a**, 175–176; **4b**, 165–167; **4c**, 160–162; **4d**, 169–171). The fragmentation was carried out as follows. To a stirred and cooled (-10 to -15 °C) solution of **4a–d** (5 mmol) in water-*tert*-butyl alcohol (1:9; 20 ml) and acetone (20 ml) [**4a**]

and **4d** also required tetrahydrofuran (20 ml)] was added *N*-bromosuccinimide (2 g, 11.23 mmol) in one portion. The mixture effervesced and turned orange-yellow. After stirring for 15 min, aqueous NaHSO₃ solution (2.7 mol l⁻¹; 50 ml) was added, followed by water (100 ml), and the mixture heated at 50–60 °C for 1 h. After cooling and extraction with hexane, the usual work-up gave a yellowish liquid in a quantitative yield. Purification by flash chromatography and/or short-path distillation furnished the pure lactones in 65% (**5a**) to 90% (**5b–d**) yield. Apart from the usual characterization by IR, Raman† (C≡C, v/cm⁻¹: 2230–2235m and 2290–2294w), and ¹H and ¹³C NMR spectroscopy, these products were hydrogenated to the known compounds: phoracantholide I **6a**,^{2a-c} 15-hexadecanolide **6d**⁷⁻⁹ and dihydrorecifeiolide **6c**.^{9,10}

Acetylenic lactones have been prepared earlier either by the oxidative coupling of terminal diacetylenes¹¹ or by the

[†] These acetylenes are IR-inactive.

Scheme 1 Reagents and conditions: i, HOCl, EtOAc; ii, DABCO (1,4-diazabicylo[2.2.2]octane), CHCl₃, heat; iii, TosNHNH₂, MeOH, H⁺, heat; iv, aq. Bu⁺OH, acetone, NBS, -10° C; v, aq. NaHSO₃, 55 °C; vi, Pd–C, H₂ (Tos = *p*-MeC₆H₄SO₂)

Scheme 2

cyclization of other suitable acyclic precursors.¹²⁻¹⁴ A different approach¹⁵ exploits the cobalt-complexed bending of the acetylenic bond to prepare some 11-membered alkynic lactones by an intramolecular procedure.¹⁶ The present methodology is different and is applicable for the ring expansion of both heteroannular and homoannular vinylogous lactones **1a-d**. The closest analogy is the conversion of some bicyclic enones into cycloalkynones, involving the fragmentation of their tosylhydrazones.⁴ In fact, based on the proposed mechanism of this fragmentation,4 we thought that the presence of vinylic oxygen in our substrates 4a-d would possibly favour the desired 1,4-addition of the nucleophile (ROH, H₂O) over the 1,2-addition, which simply hydrolyses the tosylhydrazone (Scheme 2). This expectation[‡] has been realized and we are now investigating the scope of this new method.

We thank CNPq for partial support of this work.

Received, 19th April 1993; Com. 3/02253F

References

1 J. R. Mahajan and I. S. Resck, 5th Brazilian Meeting on Organic Synthesis, Campinas-SP, 6–9th September, 1992: Abstract PS-023.

‡ Extra proof for the 1,4-addition of ROH will be provided in the full paper.

- 2 (a) J. R. Mahajan and H. C. Araújo, Synthesis, 1981, 49; (b) J. R. Mahajan and C. R. Silva, J. Braz. Chem. Soc., 1990, 1, 87;
 (c) J. R. Mahajan, H. C. Araújo and I. S. Resck, J. Braz. Chem. Soc., 1990, 1, 119; (d) J. R. Mahajan, I. S. Resck, H. C. Araújo, L. M. F. Tresvenzol and G. H. Aspesi, 15th Annual Meeting of the Brazilian Chemical Society (SBQ), Caxambu-MG, 27-31st May, 1992: Abstract QO-009.
- 3 For a recent review see: H. Stach and M. Heese, *Tetrahedron*, 1988, 44, 1573.
- 4 C. Fehr, G. Ohloff and G. Buchi, *Helv. Chim. Acta*, 1979, **62**, 2655.
- 5 R. Gelin, S. Gelin and R. Dolmazon, Bull. Soc. Chim. Fr., 1973, 1409.
- 6 P. W. Hickmott, G. J. Miles, G. Sheppard, R. Urbani and C. T. Yoxall, J. Chem. Soc., Perkin Trans. 1, 1973, 1514.
- 7 R. Kaiser and D. Lamparsky, Helv. Chim. Acta, 1978, 61, 2671.
- 8 J. R. Mahajan and H. C. Araújo, Braz. Pat. PI 8108358 (1981);
- Chem. Abstr., 1984, 100, 138981k. 9 K. Kostova and M. Hesse, Helv. Chim. Acta, 1984, 67, 1713; B.
- Milenkov and M. Hesse, *Helv. Chim. Acta*, 1986, **69**, 1323. 10 J. W. Wang, V. Verigin, A. C. Oehlschlager, J. H. Bordon, H. D.
- Y. Wang, V. Vengin, A. C. Genischager, J. H. Bordon, H. D. Pierce, A. M. Pierce and L. Long, *J. Chem. Ecol.*, 1983, 9, 451.
 W. McCrae, *Tetrahedron*, 1964, 20, 1773.
- 12 S. A. Voitkevich, N. P. Solev'eva, L. P. Kizyakova and A. G. Bel'fer, *Maslo-Zhir Prom.*, 1973, 10, 29; *Chem. Abstr.*, 1974, 80, 27228u.
- 13 R. E. Ireland and F. R. Brown, Jr., J. Org. Chem., 1980, 45, 1868.
- 14 D. Guillerm, and G. Linstrumelle, *Tetrahedron Lett.*, 1985, 26, 3811.
- 15 N. E. Schore and S. D. Najdi, J. Org. Chem., 1987, 52, 5296.
- 16 J. R. Mahajan, Synthesis, 1976, 110; J. R. Mahajan, J. R. Botelho and I. S. Resck, J. Braz. Chem. Soc., 1990, 1, 13.